If it's not what You are looking for type in the equation solver your own equation and let us solve it.
y^2+18y-34=0
a = 1; b = 18; c = -34;
Δ = b2-4ac
Δ = 182-4·1·(-34)
Δ = 460
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{460}=\sqrt{4*115}=\sqrt{4}*\sqrt{115}=2\sqrt{115}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(18)-2\sqrt{115}}{2*1}=\frac{-18-2\sqrt{115}}{2} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(18)+2\sqrt{115}}{2*1}=\frac{-18+2\sqrt{115}}{2} $
| 2/3(4/5y+3/6)=2/3(2/4-3/5) | | 2000-100x=x | | 4x-(9x+5)=8-5x | | 4m^2=(m+4)(2+m) | | 7x^2-9-33=0 | | 5t+8=-1t-4 | | 18(x-1)=-6(3-x)+12 | | 2x^2+13x+15=(x+5) | | 44+x=57 | | 5t-8=-7t+4 | | 7x+3x−2x=32. | | 3-1/2(6x+10)=5x+8-10x | | -27+20w=11 | | 6(d+3)=9(d+9) | | w^2-4W+1=0 | | 4x^2+2-38=0 | | 4x2=3 | | 3x^2+5√5x-10=0 | | 4+7x5=7x(5-4) | | 4y=-8y2-2 | | y^2-18y-219=0 | | 3w2-9=0 | | 4x2+9=0 | | 6p2+3p-2=0 | | 5/2x-7/2=23/2 | | 3t2–9t=0 | | 40x+3=x | | 4w=14.4 | | 9v2+8v–6=0 | | 7=-8u2 | | 5q2+3=0 | | 10.4+85.58=-9.6x+85.54 |